如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度-九年级数学
题文
如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP =_____ ,点Q到AC的距离是_____ ; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. |
答案
解:(1)1,; (2)作QF⊥AC于点F,如图3, AQ = CP= t, ∴.由△AQF∽△ABC, , 得.∴. ∴, 即. (3)能. ①当DE∥QB时,如图4. ∵DE⊥PQ, ∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC, 得, 即. 解得. ②如图5,当PQ∥BC时,DE⊥BC, 四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 , 即. 解得. (4)或. 【注:①点P由C向A运动,DE经过点C. 连接QC,作QG⊥BC于点G,如图6. , . 由,得, 解得. ②点P由A向C运动,DE经过点C,如图7. ,】 |
据专家权威分析,试题“如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1..”主要考查你对 求二次函数的解析式及二次函数的应用,勾股定理,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用勾股定理相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,抛物线经过两点,此抛物线的对称轴为直线,顶点为C,且与直线AB交于点D.(1)求此抛物线的解析式;(2)直接写出此抛物线的对称轴和顶点坐标;(3)连接BC,求证:;-九年级数学
下一篇:如图2,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线所对应的函数关系式-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |