已知:如图,在平面直角坐标系xOy中,直线y=-x+6与x轴、y轴的交点分别为A、B,将∠OBA对折,使点D的对应点H落在直线AB上,折痕交x轴于点C。(1)直接写出点C的坐标,并求过A、B、-九年级数学

题文

已知:如图,在平面直角坐标系xOy中,直线y=-x+6与x轴、y轴的交点分别为A、B,将∠OBA对折,使点D的对应点H落在直线AB上,折痕交x轴于点C。

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA-QO|的取值范围。
题型:解答题  难度:偏难

答案

解:(1)点C的坐标为(3,0)
∵点A、B的坐标分别为A(8,0),B(0,6),
∴可设过A、B、C三点的抛物线的解析式为y=a(x-3)(x-8)
将x=0,y=6代A抛物线的解析式,得a=
∴过A、B、C三点的抛物线的解析式为y=x2-x+6;
(2)可得抛物线的对称轴为,顶点D的坐标为
设抛物线的对称轴与x轴的交点为G,
直线BC的解析式为y=-2x+6,
设点P的坐标为(x,-2x+6),
如图,作OP∥AD交直线BC于点P,连接AP,作PM⊥x轴于点M
∵OP∥AD,
∴∠POM=∠CAD,tan∠POM=tan∠GAD,
,即
解得x=,经检验x=是原方程的解,
此时点P的坐标为
但此时OM=,GA=,OM<GA,

∴OP<AD,即四边形的对边OP与AD平行但不相等,
∴直线BC上不存在符合条件的点P;
(3)|QA-QO|的取值范围是0≤x≤4。
说明:如图,由对称性可知QO=QH,|QA-QO|=|QA-QH|,
当点Q与点B重合时,Q、H、A三点共线,|QA-QO|取得最大值4(即为AH的长);
设线段OA的垂直平分线与直线BC的交点为K,当点口与点K重合时,|QA-QO|取得最小值0。

据专家权威分析,试题“已知:如图,在平面直角坐标系xOy中,直线y=-x+6与x轴、y轴的交点..”主要考查你对  求二次函数的解析式及二次函数的应用,平行四边形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用平行四边形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐