已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3)。(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A),①如图1,-九年级数学

题文

已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3)。
(1)求抛物线的解析式;
(2)若点P在抛物线上运动(点P异于点A),
①如图1,当△PBC面积与△ABC面积相等时.求点P的坐标;
②如图2.当∠PCB=∠BCA时,求直线CP的解析式。

题型:解答题  难度:偏难

答案

解:(1)由题意,得
解得
∴抛物线的解析式为

(2)①令y=,解得x1=1,x2=3
∴B(3, 0)
当点P在x轴上方时,如图1,
过点A作直线BC的平行线交抛物线于点P,
易求直线BC的解析式为y=x-3,
 ∴设直线AP的解析式为y=x+n,
∵直线AP过点A(1,0),代入求得n=-1。
∴直线AP的解析式为y=x-1
解方程组,得
∴点当点P在x轴下方时,如图1
设直线AP1交y轴于点E(0,-1),
把直线BC向下平移2个单位,交抛物线于点P2、P3
得直线P2P3的解析式为y=x-5,
解方程组,得

综上所述,点P的坐标为:
②∵
∴OB=OC,
∴∠OCB=∠OBC=45°
设直线CP的解析式为
如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°-α
∵∠PCB=∠BCA
∴∠PCB=45°-α
∴∠OQC=∠OBC-∠PCB=45°-(45°-α)=α
∴∠OCA=∠OQC
又∵∠AOC=∠COQ=90°
∴Rt△AOC∽Rt△COQ


∴OQ=9,

∵直线CP过点
∴9k-3=0

∴直线CP的解析式为




据专家权威分析,试题“已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用二次函数的图像

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐