如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3)。(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为___________;(3)在x轴-九年级数学

题文

如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为(-2,0),与y轴交于点C(0,3)。
(1)求出这个二次函数的解析式;
(2)直接写出点B的坐标为___________;
(3)在x轴是否存在一点P,使△ACP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,请说明理由;
(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?若存在,请求出Q点坐标及面积的最大值;若不存在,请说明理由。

题型:解答题  难度:偏难

答案

解:(1)∵y=ax2+x+c的图象经过A(-2,0),C(0,3),
∴c=3,a=-
∴所求解析式为:y=-x2+x+3;
(2)(6,0);
(3)在Rt△AOC中,
∵AO=2,OC=3,
∴AC=
①当P1A=AC时(P1在x轴的负半轴),P1(-2-,0);
②当P2A=AC时(P2在x轴的正半轴),P2(-2,0);
③当P3C=AC时(P3在x轴的正半轴),P3(2,0);
④当P4C=P4A时(P4在x轴的正半轴),
在Rt△P4OC中,设P4O=x,则(x+2)2=x2+32
解得:x=
∴P4,0);
(4)解:如图,设Q点坐标为(x,y),因为点Q在y=-x2+x+3上,
即:Q点坐标为(x,-x2+x+3),
连接OQ,S四边形ABQC=S△AOC+S△OQC+S△OBQ
=3+x+3(-x2+x+3)
=-x2+x+12,
∵a<0,
∴S四边形ABQC最大值=,Q点坐标为(3,)。

据专家权威分析,试题“如图,二次函数y=ax2+x+c的图象与x轴交于点A、B两点,且A点坐标为..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,二次函数的最大值和最小值,等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像二次函数的最大值和最小值等腰三角形的性质,等腰三角形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐