如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是。(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最-九年级数学

函数不是数,它是指某一变化过程中两个变量之间的关系
一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

  • 考点名称:三角形的周长和面积

    • 三角形的概念:
      由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

      构成三角形的元素:
      边:组成三角形的线段叫做三角形的边;
      顶点:相邻两边的公共端点叫做三角形的顶点;
      内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

      三角形有下面三个特性:
      (1)三角形有三条线段;
      (2)三条线段不在同一直线上;
      (3)首尾顺次相接。

      三角形的表示:
      用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

    • 三角形的分类:
      (1)三角形按边的关系分类如下:

      (2)三角形按角的关系分类如下:

      把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

    • 三角形的周长和面积:
      三角形的周长等于三角形三边之和。
      三角形面积=(底×高)÷2。

    考点名称:相似三角形的性质

    • 相似三角形性质定理:
      (1)相似三角形的对应角相等。
      (2)相似三角形的对应边成比例。
      (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
      (4)相似三角形的周长比等于相似比。
      (5)相似三角形的面积比等于相似比的平方。
      (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
      (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
      (8)c/d=a/b 等同于ad=bc.
      (9)不必是在同一平面内的三角形里
      ①相似三角形对应角相等,对应边成比例.
      ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
      ③相似三角形周长的比等于相似比

      定理推论:
      推论一:顶角或底角相等的两个等腰三角形相似。
      推论二:腰和底对应成比例的两个等腰三角形相似。
      推论三:有一个锐角相等的两个直角三角形相似。
      推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
      推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
      推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐