如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接P-九年级数学

题文

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE,若设运动时间为t(s)(0<t<5),解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由。

题型:解答题  难度:偏难

答案

解:(1)∵PE∥AB,

而DE=t,DP=10-t,,


∴当,PE∥AB;
(2)∵EF平行且等于CD,
∴四边形CDEF是平行四边形,
∴∠DEQ=∠C,∠DQE=∠BDC,
∵BC=BD=10,
∴∠DEQ=∠C=∠DQE=∠BDC,
∴△DEQ∽△BCD,
 ∴

过B作,交CD于M,过P作,交EF于N,

 ∵


 
(3)
,则有
解得
(4)在△PDE和△FBP中,
 



∴在运动过程中,五边形PFCDE的面积不变。

据专家权威分析,试题“如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由..”主要考查你对  求二次函数的解析式及二次函数的应用,平行线的判定,全等三角形的性质,勾股定理,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用平行线的判定全等三角形的性质勾股定理相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐