在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图(1))。(1)在图(1)中画图探究:①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1-九年级数学

题文

ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图(1))。

(1)在图(1)中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论;
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
题型:解答题  难度:偏难

答案

解:(1)①直线FG,与直线CD的位置关系为互相垂直,
证明:如图(1),设直线FG,与直线CD的交点为H,
∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1
∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC,
∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,
∴∠G1EF=∠P1EC,
∴△G1EF≌△P1EC
∴∠G1FE=∠P1CE,
∵EC⊥CD,
∴∠P1CE=90°
∴∠G1FE=90°,∠EFH=90°
∴∠FHC=90°
∴FG1⊥CD;
②按题目要求所画图形见图(1),直线G1G2与直线CD的位置关系为互相垂直;
(2)∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵AD=6,AE=1,tanB=
∴DE=5,tan∠EDC=tanB=
可得CE=4,由(1)可得四边形FECH为正方形,
∴CH=CE=4,
①如图(2),当P1点在线段CH的延长线上时,
∵FC1=CP1=x,P1H=x-4,


②如图(3),当P1点在线段CH上(不与C、H两点重合)时,
∵FG1=CP1=x,P1H=4-x,


③当P1点与H点重合时,即x=4时,
△P1FG1不存在;
综上所逑,y与x之间的函数关系式及自变量x的取值范围是+2x(0<x<4)。


据专家权威分析,试题“在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得..”主要考查你对  求二次函数的解析式及二次函数的应用,垂直的判定与性质,全等三角形的性质,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用垂直的判定与性质全等三角形的性质平行四边形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐