九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得-九年级数学
题文
九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程: (1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式; (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)? (3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答: I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴上,设矩形ABCD的周长为l求l的最大值; II.如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。 |
|
答案
解:(1)根据坐标系可知此函数顶点坐标为(5,6.25), ∴设抛物线的解析式为, ∵图象过(10,0)点, ∴, 解得, ∴抛物线的解析式为; |
|
(2)当最宽3m,最高3.5m的两辆厢式货车居中并列行驶时,x=2, 把x=2代入解析式得:y=-0.25(2-5)2+6.25,y=4, ∵4-3.5=0.5, ∴隧道能让最宽3m,最高3.5m的两辆厢式货车居中并列行驶; |
|
(3)I.假设AO=x,可得AB=10-2x, ∴AD=-0.25(x-5)2+6.25, ∴矩形ABCD的周长为l: l=2[-0.25(x-5)2+6.25]+2(10-2x)=-0.5x2+x+20=-0.5(x-1)2+20.5, ∴l的最大值为20.5, II.当以P、N、Q为顶点的三角形是等腰直角三角形, ∵P在y=x的图象上,设P(m,m), 过P点作x轴的垂线交抛物线于点Q, ∴∠POA=∠OPA=45°,N点的坐标为(5,5), ∴Q点的坐标为(m,5), 把Q点的坐标代入,得, 解得, ∴使以P、N、Q为顶点的三角形是等腰直角三角形,P点的坐标为:(,)或(,)。 |
据专家权威分析,试题“九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了..”主要考查你对 求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |