在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点。(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点-九年级数学
题文
在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点。 (1)求此抛物线的解析式; (2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由。(注意:本题中的结果可保留根号) |
答案
解:(1)设抛物线的解析式为:, 由题意得:, 解得:, ∴抛物线的解析式为:; |
|
(2)存在, 抛物线的顶点坐标是, 作抛物线和⊙M(如图), 设满足条件的切线l与x轴交于点B,与⊙M相切于点C 连接MC, 过C作CD⊥x 轴于D, ∵MC=OM=2,∠CBM=30°,CM⊥BC, ∴∠BCM=90°,∠BMC=60°,BM=2CM=4, ∴B(-2,0) 在Rt△CDM中,∠DCM=∠CDM-∠CMD=30°, ∴DM=1,CD= ∴ C(1,) 设切线l的解析式为:, 点B、C在l上,可得: 解得: ∴切线BC的解析式为: ∵点P为抛物线与切线的交点 由解得:, ∴点P的坐标为:, ∵ 抛物线的对称轴是直线x=2, 此抛物线、⊙M都与直线x=2成轴对称图形, 于是作切线l关于直线x=2的对称直线l′(如图)得到B、C关于直线的对称点B1、C1, l′满足题中要求,由对称性,得到P1、P2关于直线x=2的对称点:,即为所求的点, ∴这样的点P共有4个:,,,。 |
据专家权威分析,试题“在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点。..”主要考查你对 求二次函数的解析式及二次函数的应用,轴对称,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离) 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用轴对称直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,抛物线y=-x2-2x+3与x轴相交于点A和点B,与y轴交于点C。(1)求点A、点B和点C的坐标;(2)求直线AC的解析式;(3)设点M是第二象限内抛物线上的一点,且S△MAB=6求点M的坐标;-九年级数学
下一篇:某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件。(1)当售价定为30元时,一个月可获利多少元?(2-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |