如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点。(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于-九年级数学


可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

决定与y轴交点的因素:

常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。

与x轴交点个数:
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

考点名称:正方形,正方形的性质,正方形的判定

  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。

  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
    2、内角:四个角都是90°;
    3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
    4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
    5、正方形具有平行四边形、菱形、矩形的一切性质;
    6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
    正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
    7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
    正方形外接圆面积大约是正方形面积的157%。
    8、正方形是特殊的长方形。

  • 正方形的判定:
    判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
    1:对角线相等的菱形是正方形。
    2:有一个角为直角的菱形是正方形。
    3:对角线互相垂直的矩形是正方形。
    4:一组邻边相等的矩形是正方形。
    5:一组邻边相等且有一个角是直角的平行四边形是正方形。
    6:对角线互相垂直且相等的平行四边形是正方形。
    7:对角线相等且互相垂直平分的四边形是正方形。
    8:一组邻边相等,有三个角是直角的四边形是正方形。
    9:既是菱形又是矩形的四边形是正方形。

    有关计算公式:
    若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
    正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
    正方形周长计算公式: C=4a 。
    S正方形=。(正方形边长为a,对角线长为b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐