如图所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动-九年级数学
题文
如图所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动,设BQ=x,QR=y。 |
(1)若B、K两点的坐标分别为(0,0)、(5,5),C点在x轴的正半轴上,求经过K、B、C三点的抛物线解析式; (2)求点D到BC的距离DH的长; (3)求y关于x的函数关系式(不要求写出自变量的取值范围); (4)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由。 |
答案
解:(1)在Rt △ABC中,BC= ∴点C的坐标为(10,0), 设经过K、B、C三点的抛物线解析式为y=ax2+bx+c(a≠0), 将点K(5,5)、B(0,0)、C(10,0)代入得 解得 ∴经过K、B、C三点的抛物线解析式为y=-+2x; |
|
(2)∵点D为AB的中点, ∴BD=AB=3, ∵∠DHB=∠A=90°,∠B=∠B, ∴△BHD∽△BAC, ∴ ∴; |
|
(3)∵QR//AB, |
|
(4)存在,分三种情况: ①如图(a),当PQ= PR时,过点P作PM⊥QR于M,则QM=RM, ∵∠1+∠2=90°,∠C+∠2=90°, ∴cos∠1=cos∠C=, ∴, ∴ ∴, ②如图(b),当PQ=RQ时, ∴x=6, ③如图(c),当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点, ∴CR=CE=AC,AC=2, ∵tan∠C=, ∴ ∴ 综上,当x为或6或时, ∴△PQR为等腰三角形。 |
据专家权威分析,试题“如图所示,在Rt△ABC中,∠A=90°,AB=6、AC=8,D、E分别是边AB、AC..”主要考查你对 求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:2009年4月1日,合武铁路正式建成通车,“和谐号”高速列车到合肥只需2小时,为此,武汉到合肥的时间缩短了8个小时,此列车有588座,若票价定为120元,每趟可卖500张票;若每张-九年级数学
下一篇:一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售4件,要使每天获得的利润最大,每件需降价的钱数为()元。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |