如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm。从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E的方向运动,-九年级数学

题文

如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm。从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E的方向运动,到点E停止;动点Q沿B-C-E-D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:
(1)当x=2s时,y=______cm2;当x=s时,y=______cm2
(2)当5≤x≤14 时,求y与x之间的函数关系式。
(3)当动点P在线段BC上运动时,求出y=S梯形ABCD时x的值。
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值。
题型:解答题  难度:偏难

答案

解:(1)2;9;
(2)当5≤x≤9时
y=S梯形ABCQ-S△ABP-S△PCQ=(5+x-4)×4-×5(x-5)-(9-x)(x-4)
 
当9<x≤13时
y=(x-9+4)(14-x)

当13<x≤14时
y=×8(14-x)=-4x+56
即y=-4x+56。
(3)当动点P在线段BC上运动时
S梯形ABCD=(4+8)×5=8

即x2-14x+49=0
解得x1=x2=7
∴当x=7时,S梯形ABCD
(4)

据专家权威分析,试题“如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4c..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,一元二次方程的解法,平行线的性质,平行线的公理,三角形的周长和面积  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用一元二次方程的解法平行线的性质,平行线的公理三角形的周长和面积

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐