如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm。从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E的方向运动,-九年级数学

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:一元二次方程的解法

    • 一元二次方程的解:
      能够使方程左右两边相等的未知数的值叫做方程的解。
      解一元二次方程方程:
      求一元二次方程解的过程叫做解一元二次方程方程。

    • 韦达定理:
      一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
      一般式:ax2+bx+c=0的两个根x1和x2关系:
      x1+x2= -b/a
      x1·x2=c/a

    • 一元二次方程的解法:
      1、直接开平方法
      利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
      直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
      用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

      2、配方法
      配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
      配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

      3、公式法
      公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
      一元二次方程 的求根公式:
      求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

      4、因式分解法
      因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

    考点名称:平行线的性质,平行线的公理

    • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
      推论(平行线的传递性):平行同一直线的两直线平行。
      ∵a∥c,c ∥b
      ∴a∥b。

      平行线的性质:
      1. 两条平行被第三条直线所截,同位角相等。
      简单说成:两直线平行,同位角相等。
      2. 两条平行线被第三条直线所截,内错角相等。
      简单说成:两直线平行,内错角相等。
      3 . 两条平行线被第三条直线所截,同旁内角互补。
      简单说成:两直线平行,同旁内角互补。

    • 平行线的性质公理注意:
      ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
      ②平行公理体现了平行线的存在性和唯一性;
      ③平行公理的推论体现了平行线的传递性。
      ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

    考点名称:三角形的周长和面积

    • 三角形的概念:
      由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

      构成三角形的元素:
      边:组成三角形的线段叫做三角形的边;
      顶点:相邻两边的公共端点叫做三角形的顶点;
      内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

      三角形有下面三个特性:
      (1)三角形有三条线段;
      (2)三条线段不在同一直线上;
      (3)首尾顺次相接。

      三角形的表示:
      用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

    • 三角形的分类:
      (1)三角形按边的关系分类如下:

      (2)三角形按角的关系分类如下:

      把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

    • 三角形的周长和面积:
      三角形的周长等于三角形三边之和。
      三角形面积=(底×高)÷2。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐