如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米。(1)请求出底边BC的长(用含x的代数式表示);(2)若∠BAD=60°,该花圃的面积为S-九年级数学

题文

如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米。
(1)请求出底边BC的长(用含x的代数式表示);
(2)若∠BAD=60°,该花圃的面积为S米2
①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=时x的值;
②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?
题型:解答题  难度:偏难

答案

解:(1)∵AB=CD=x米,
∴BC=40-AB-CD=(40-2x)米;
(2)①如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,
在Rt△ABE中,AB=x,∠BAE=60°,
∴AE=x,BE=x,
同理DF=x,CF=x
又EF=BC=40-2x
∴AD=AE+EF+DF=x+40-2x+x=40-x,
∴S=(40-2x+40-x)·x=x(80-3x)=(0<x<20)
当S=时,
解得:x1=6,x2=(舍去)
∴x=6
②由题意,得40-x≤24,解得x≥16,结合①得16≤x<20
由①,S==
∵a=<0
∴函数图象为开口向下的抛物线的一段(附函数图象草图如左),
其对称轴为x=
∵16>,由左图可知,当16≤x<20时,S随x的增大而减小,
∴当x=16时,S取得最大值,
此时S最大值=

据专家权威分析,试题“如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆..”主要考查你对  求二次函数的解析式及二次函数的应用,梯形,梯形的中位线  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用梯形,梯形的中位线

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐