如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD,点A的对应点为点E,-九年级数学


例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

考点名称:平行四边形的性质

  • 平行四边形的概念:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
    ①平行四边形属于平面图形。
    ②平行四边形属于四边形。
    ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
    ④平行四边形属于中心对称图形。

  • 平行四边形的性质:
    主要性质
    (矩形、菱形、正方形都是特殊的平行四边形。)
    (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
    (简述为“平行四边形的两组对边分别相等”)
    (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
    (简述为“平行四边形的两组对角分别相等”)
    (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
    (简述为“平行四边形的邻角互补”)
    (4)夹在两条平行线间的平行线段相等。
    (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
    (简述为“平行四边形的对角线互相平分”)
    (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
    (7)平行四边形的面积等于底和高的积。(可视为矩形)
    (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
    (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
    (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
    注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

    (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
    (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
    (13)平行四边形对角线把平行四边形面积分成四等分。
    (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
    (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

考点名称:解直角三角形

  • 概念:
    在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

    解直角三角形的边角关系:
    在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,
    (1)三边之间的关系:(勾股定理);
    (2)锐角之间的关系:∠A+∠B=90°;
    (3)边角之间的关系:

  • 解直角三角形的函数值:

    锐角三角函数:
    sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a
    (1)互余角的三角函数值之间的关系:
    若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA
    (2)同角的三角函数值之间的关系:
    ①sin2A+cos2A=1
    ②tanA=sinA/cosA
    ③tanA=1/tanB
    ④a/sinA=b/sinB=c/sinC
    (3)锐角三角函数随角度的变化规律:
    锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

  • 解直角三角形的应用:
    一般步骤是:
    (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);
    (2)根据题目的条件,适当选择锐角三角函数等去解三角形;
    (3)得到数学问题的答案;
    (4)还原为实际问题的答案。

  • 解直角三角形的函数值列举:
    sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
    sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
    sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
    sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
    sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
    sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474
    sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
    sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
    sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
    sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
    sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027
    sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
    sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
    sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582
    sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
    sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941
    sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708
    sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474
    sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239
    sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386
    sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678
    sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009
    sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017
    sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535
    sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683
    sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057
    sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378
    sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733
    sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738
    sin88=0.9993908270190958 sin89=0.9998476951563913
    sin90=1

    cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
    cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
    cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐