如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上。(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的-九年级数学

题文

如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上。

(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点。
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由。
题型:解答题  难度:偏难

答案

解:(1)将点A(-4,8)的坐标代入,解得a=
将点B(2,n)的坐标代入,求得点B的坐标为(2,2),
则点B关于x轴对称点P的坐标为(2,-2),
直线AP的解析式是
令y=0,得,即所求点Q的坐标是(,0);
(2)①,故将抛物线向左平移个单位时,
A′C+CB′最短,此时抛物线的函数解析式为
②左右平移抛物线,因为线段A′B′和CD的长是定值,所以要使四边形A′B′CD的周长最短,只要使A′D+CB′最短;
第一种情况:如果将抛物线向右平移,显然有A′D+CB′>AD+CB,因此不存在某个位置,使四边形A′B′CD的周长最短;
第二种情况:设抛物线向左平移了b个单位,则点A′和点B′的坐标分别为A′(-4-b,8)和B′(2-b,2),因为CD=2,因此将点B′向左平移2个单位得B′′(-b,2),要使A′D+CB′最短,只要使A′D+DB′′最短,
点A′关于x轴对称点的坐标为A′′(-4-b,-8),直线A′′B′′的解析式为,要使A′D+DB′′最短,点D应在直线A′′B′′上,将点D(-4,0)代入直线A′′B′′的解析式,解得,故将抛物线向左平移时,存在某个位置,使四边形A′B′CD的周长最短,此时抛物线的函数解析式为

据专家权威分析,试题“如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上。(1)求a的值及..”主要考查你对  求二次函数的解析式及二次函数的应用,轴对称,平移  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用轴对称平移

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐