已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C。(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点-九年级数学

  • 直角三角形的判定方法:
    判定1:定义,有一个角为90°的三角形是直角三角形。
    判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
    判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
    判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
    判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
    判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
    判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

  • 考点名称:相似三角形的性质

    • 相似三角形性质定理:
      (1)相似三角形的对应角相等。
      (2)相似三角形的对应边成比例。
      (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
      (4)相似三角形的周长比等于相似比。
      (5)相似三角形的面积比等于相似比的平方。
      (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
      (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
      (8)c/d=a/b 等同于ad=bc.
      (9)不必是在同一平面内的三角形里
      ①相似三角形对应角相等,对应边成比例.
      ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
      ③相似三角形周长的比等于相似比

      定理推论:
      推论一:顶角或底角相等的两个等腰三角形相似。
      推论二:腰和底对应成比例的两个等腰三角形相似。
      推论三:有一个锐角相等的两个直角三角形相似。
      推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
      推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
      推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐