已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)。(1)求抛物线的解析式;(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任-九年级数学


当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1?x2]
=a(x-x1)(x-x2).
重要概念:
a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
a<0时,开口方向向下。a的绝对值可以决定开口大小。
a的绝对值越大开口就越小,a的绝对值越小开口就越大。
能灵活运用这三种方式求二次函数的解析式;
能熟练地运用二次函数在几何领域中的应用;
能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
    ①牛顿插值公式:
    f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
    二次函数表达式的右边通常为二次三项式。

    双根式
    y=a(x-x1)*(x-x2)
    若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

    ③三点式
    已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
    则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)
    与X轴交点的情况
    当△=b2-4ac>0时,函数图像与x轴有两个交点。(x1,0), (x2,0);
    当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。
    Δ=b2-4ac<0时,抛物线与x轴没有交点。
    X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  • 二次函数解释式的求法:
    就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。

    1.巧取交点式法:
    知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。
    已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。
    ①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。
    例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
    点拨:
    解设函数的解析式为y=a(x+2)(x-1),
    ∵过点(2,8),
    ∴8=a(2+2)(2-1)。
    解得a=2,
    ∴抛物线的解析式为:
    y=2(x+2)(x-1),
    即y=2x2+2x-4。

    ②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
    例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
    点拨:
    在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

    2.巧用顶点式:
    顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
    ①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
    例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
    点拨:
    解∵顶点坐标为(-1,-2),
    故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
    把点(1,10)代入上式,得10=a·(1+1)2-2。
    ∴a=3。
    ∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

    ②典型例题二:
    如果a>0,那么当 时,y有最小值且y最小=
    如果a<0,那么,当时,y有最大值,且y最大=
    告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
    例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
    点拨:
    析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
    由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
    ∴抛物线的顶点为(4,-3)且过点(1,0)。
    故可设函数解析式为y=a(x-4)2-3。
    将(1,0)代入得0=a(1-4)2-3, 解得a=13.
    ∴y=13(x-4)2-3,即y=13x2-83x+73。
    ③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
    例如:
    (1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
    (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
    (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
    (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

    ④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
    例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
    点拨:
    解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
    ∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
    ∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

  • 考点名称:全等三角形的性质

    • 全等三角形:
      两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
      全等三角形的对应边相等,对应角相等。
      ①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
      ②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
      ③有公共边的,公共边一定是对应边;
      ④有公共角的,角一定是对应角;
      ⑤有对顶角的,对顶角一定是对应角。

    • 全等三角形的性质:
      1.全等三角形的对应角相等。
      2.全等三角形的对应边相等。
      3.全等三角形的对应边上的高对应相等。
      4.全等三角形的对应角的角平分线相等。
      5.全等三角形的对应边上的中线相等。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐