某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不-九年级数学

题文

某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩蔬菜的收益会相应降低,经调查,种植亩数y(亩)、每亩蔬菜的收益z(元)与补贴数额x(元)之间的关系如下表:

x(元)

0

100

200

300

y(亩)

800

1600

2400

3200

z(元)

3000

2700

2400

2100

(1)分别求出政府补贴政策实施后种植亩数y、每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(2)要使全县这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值和此时种植亩数。
(3)在取得最大收益的情况下,为了满足市场需求,用不超过70亩的土地对这种蔬菜进行反季节的种植,为此需修建一些蔬菜大棚,修建大棚要用的支架、塑料膜等材料平均每亩的费用为650元,此外还要购置喷灌设备,这项费用(元)与大棚面积(亩)的平方成正比例,比例系数为25,这样,修建大棚后的这部分土地每亩的平均收益比没修前增加了2000元,在扣除修建费后总共增加了85000元.,求修建了多少亩蔬菜大棚?(结果精确到个位,参考数据:1.414)
题型:解答题  难度:中档

答案

解:(1)由表格知,y与x,z与x均成一次函数关系
,将(0,800)、(100,1600)代入:
解得:

,将(0,3000)、(100,2700)代入:
解得

(2)
∴当x=450时取得最大值7260000,y=8×450+800=4400
答:政府每亩补贴450元可获得最大总收益7260000元,此时种植4400亩。
(3)设修建了m亩蔬菜大棚,原来每亩的平均收益为7260000÷4400=1650元
由题意得方程:(1650+2000)m-650m-25m2=85000
解得
∵0<m≤70,
∴m≈46
答:修建了46亩蔬菜大棚。

据专家权威分析,试题“某县种植了一种无公害蔬菜,为了扩大生产规模,该县决定对这种蔬..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用一元二次方程的应用

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐