如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0)。(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;(2)设抛物线的顶点为D,请在图中画出-九年级数学
题文
如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0)。 |
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看; (2)设抛物线的顶点为D,请在图中画出抛物线的草图,若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来; (3)请设法求出tan∠DAC的值。 |
答案
解:(1)因为A(3,0)在抛物线y=-x2+mx+3上, 则-9+3m+3=0,解得m=2, 所以抛物线的解析式为y=-x2+2x+3, 因为B点为抛物线与x轴的交点,求得B(-1,0), 因为C点为抛物线与y轴的交点,求得C(0,3); (2)∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D(1,4), 画这个函数的草图, 由B,C点的坐标可求得直线BC的解析式为y=3x+3, ∵点E(-2,n)在y=3x+3上, ∴E(-2,-3), 可求得过D点的反比例函数的解析式为, 当x=-2时,, ∴点E不在过D点的反比例函数图象上; (3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形, 且CD=, 连接AC,则△AOC为等腰直角三角形,且AC=3, 因为∠ACD=180°-45°-45°=90°, ∴Rt△ADC中,tan∠DAC=, 另解:∵Rt△CFD∽Rt△COA, ∴, ∵∠ACD=90°, ∴。 |
据专家权威分析,试题“如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0)。(1)你一定能..”主要考查你对 求二次函数的解析式及二次函数的应用,求反比例函数的解析式及反比例函数的应用,二次函数的图像,锐角三角函数的定义 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用求反比例函数的解析式及反比例函数的应用二次函数的图像锐角三角函数的定义
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1?x2]
=a(x-x1)(x-x2).
重要概念:
a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
a<0时,开口方向向下。a的绝对值可以决定开口大小。
a的绝对值越大开口就越小,a的绝对值越小开口就越大。
能灵活运用这三种方式求二次函数的解析式;
能熟练地运用二次函数在几何领域中的应用;
能熟练地运用二次函数解决实际问题。- 二次函数的其他表达形式:
①牛顿插值公式:
f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距)
二次函数表达式的右边通常为二次三项式。
双根式
y=a(x-x1)*(x-x2)
若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |