如图,菱形ABCD的顶点A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上。(1)求抛物线对应的函数关系式,并说明此抛物线一定过点C、D;(2)若M点是该抛物线-九年级数学

题文

如图,菱形ABCD的顶点A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上。

(1)求抛物线对应的函数关系式,并说明此抛物线一定过点C、D;
(2)若M点是该抛物线上位于C、D之间的一动点,求△CDM面积的最大值。
题型:解答题  难度:偏难

答案

解:(1)由题意,可设所求抛物线对应的函数关系式为


∴所求函数关系式为:
在Rt△ABO中,OA=3,OB=4

∵四边形ABCD是菱形
∴BC=CD=DA=AB=5
∴C、D两点的坐标分别是(5,4)、(2,0)
当x=5时,
时,
∴点C和点D在所求抛物线上。
(2)设直线CD对应的函数关系式为

解得:

∵MN∥y轴,M点的横坐标为t,
∴N点的横坐标也为t



∴当时,

据专家权威分析,试题“如图,菱形ABCD的顶点A、B两点的坐标分别为(,0)、(0,4),抛物线..”主要考查你对  求二次函数的解析式及二次函数的应用,菱形,菱形的性质,菱形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用菱形,菱形的性质,菱形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐