填空,完成下列说理过程.如图,BD平分∠ABC交AC于点D,∠C=∠DEB=90°,那么∠CDB与∠EDB相等吗?请说明理由.因为∠1+∠CDB+∠C=180°,且∠C=90°,所以∠1+∠CDB=90°.因为∠2+∠EDB+∠DEB=18-数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

填空,完成下列说理过程.
如图,BD平分∠ABC交AC于点D,∠C=∠DEB=90°,那么∠CDB与∠EDB相等吗?请说明理由.
因为∠1+∠CDB+∠C=180°,且∠C=90°,
所以∠1+∠CDB=90°.
因为∠2+∠EDB+∠DEB=180°,且∠DEB=90°,
所以∠2+∠EDB=90°.
因为BD平分∠ABC,
根据______,
所以∠1______∠2.
根据______,
所以∠CDB=∠EDB.

题型:解答题  难度:中档

答案

根据角平分线的定义可得出∠1=∠2;
根据等角的余角相等可得出:∠CDB=∠EDB;
故答案为:角平分线定义;等角的余角相等.

据专家权威分析,试题“填空,完成下列说理过程.如图,BD平分∠ABC交AC于点D,∠C=∠DEB=90..”主要考查你对  角平分线的定义 ,余角,补角  等考点的理解。关于这些考点的“档案”如下:

角平分线的定义 余角,补角

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

考点名称:余角,补角

  • 余角:
    如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
    ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
    补角:
    如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
    ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A

  • 补角的性质:
    同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
    等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
    余角的性质:
    同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
    等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B
    注意:
    ①钝角没有余角;
    ②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;
    ③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。

  • 余角与补角概念认识提示:
    (1)定义中的“互为”一词如何理解?
    如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1。
    (2)互余、互补的两角是否一定有公共顶点或公共边?
    两角互余或互补,只与角的度数有关,与位置无关。
    (3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余(互补)吗?
    不能,互余或互补是两个角之间的数量关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐