如图,已知AD平分∠BAC,且AD⊥BC于D,点E、A、C在同一直线上,∠DAC=∠EFA,延长EF交BC于G,说明为什么EG⊥BC.-数学
题文
如图,已知AD平分∠BAC,且AD⊥BC于D,点E、A、C在同一直线上,∠DAC=∠EFA,延长EF交BC于G,说明为什么EG⊥BC. |
题文
如图,已知AD平分∠BAC,且AD⊥BC于D,点E、A、C在同一直线上,∠DAC=∠EFA,延长EF交BC于G,说明为什么EG⊥BC. |
题型:解答题 难度:中档
答案
∵AD平分∠BAC, ∴∠BAD=∠DAC, ∵∠DAC=∠EFA, ∴∠BAD=∠DAC=∠EFA, ∴EG∥AD, ∵AD⊥BC, ∴EG⊥BC. |
据专家权威分析,试题“如图,已知AD平分∠BAC,且AD⊥BC于D,点E、A、C在同一直线上,∠DA..”主要考查你对 角平分线的定义 ,平行线的判定,垂直的判定与性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 平行线的判定垂直的判定与性质
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:平行线的判定
平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
考点名称:垂直的判定与性质
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |