如图1,将射线OX绕点O按逆时针旋转n°的角,得到射线OY,如果点P为射线OY上一点,且OP=a,那么我们就规定用(a,n°)表示点P在平面内的位置,并记为P(a,n°).例如在图2中,如果-数学

首页 > 考试 > 数学 > 初中数学 > 角平分线的定义/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图1,将射线OX绕点O按逆时针旋转n°的角,得到射线OY,如果点P为射线OY上一点,且OP=a,那么我们就规定用(a,n°)表示点P在平面内的位置,并记为P(a,n°).例如在图2中,如果OM=6,∠XOM=200°,那么点M在平面内的位置记为M(6,200°).
根据上述规定解答下列问题:
(1)在图3中,如果点N在平面内的位置记为N(10,35°),那么ON=______,∠XON=______°.
(2)将图3中的射线OY绕点O旋转一定的角度(小于360度),使得旋转后所得到的射线OZ与射线OY垂直,则旋转后点N在平面内的位置可记为______,请在图3中画出旋转后的图形.
题型:解答题  难度:中档

答案

(1)∵点N在平面内的位置记为N(10,35°),
∴ON=10,∠NPM=35°,
故答案为:10,35.

(2)如图:

当射线OZ在OZ1位置时,∠XOZ=35°+90°=125°,
即此时旋转后点N在平面内的位置可记为(10,125°);
当射线OZ在OZ2位置时,∠XOZ2=90°-35°=55°,
∴360°-55°=305°,
即此时旋转后点N在平面内的位置可记为(10,305°);
故答案为:(10,125°)或(10,305°).

据专家权威分析,试题“如图1,将射线OX绕点O按逆时针旋转n°的角,得到射线OY,如果点P为..”主要考查你对  角平分线的定义   等考点的理解。关于这些考点的“档案”如下:

角平分线的定义

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐