如图,点A、O、B在同一条直线上(1)∠AOC比∠BOC大100°,求∠AOC与∠BOC的度数(2)在(1)的条件下,若∠BOC与∠BOD互余,求∠BOD的度数(3)在(2)的条件下,若OE平分∠AOC,求∠DOE的度数-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

如图,点A、O、B在同一条直线上

(1)∠AOC比∠BOC大100°,求∠AOC与∠BOC的度数
(2)在(1)的条件下,若∠BOC与∠BOD互余,求∠BOD的度数
(3)在(2)的条件下,若OE平分∠AOC,求∠DOE的度数

题型:解答题  难度:偏易

答案


(1) ∠AOC=140° ∠BOC=40°
(2) ∠BOD=50°    
(3) ∠DOE=160°


(1)   由点A、O、B在同一条直线上得∠AOC+∠BOC=180°,因为∠AOC比∠BOC大100°,所以用∠BOC+100°表示∠AOC从而求出∠BOC,进而求出∠AOC;
(2)   (2)由∠BOC与∠BOD互余,所以∠BOD=90°-∠BOC,从而求得∠BOD的度数;
(3)   (3)由(2)得∠COD=90°,OE平分∠AOC,得
解:(1)∵∠AOC比∠BOC大100°,
∴∠AOC=∠BOC+100°,
又点A、O、B在同一条直线上.
∴∠AOC+∠BOC=180°,
∴∠BOC+100°+∠BOC=180°,
∴∠BOC=40°,
∠AOC=140°;
(2)∵∠BOC与∠BOD互余,
∴∠BOD+∠BOC=90°,
∴∠BOD=90°-∠BOC=90°-40°=50°;
(3)∵OE平分∠AOC,
∴得∠COE= ∠AOC=70°,
∵∠BOD+∠BOC=90°,
∴∠DOE=∠COE+∠COD=∠COE+∠BOD+∠BOC
=70°+90°
=160°.
 

据专家权威分析,试题“如图,点A、O、B在同一条直线上(1)∠AOC比∠BOC大100°,求∠AOC与∠B..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐