【提出问题】如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?【探究过程】小明提出:可以从特殊情况开始探究,如图②,在梯形A-七年级数学
题文
【提出问题】 如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少? 【探究过程】 小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少? 如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy. 以下是几位同学的对话: A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可. B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值 C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可. (1)请选择A同学或者B同学的方法,完成解题过程. (2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程) 【解决问题】 根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值. |
答案
(1)25;(2)如下图;(3)如下图,S梯形ABCD最大值为: |
试题分析:(1)选择A同学,由S△DBE==即可作出判断;选择B同学,根据三角形的面积公式即可作出判断; (2)(3)先根据题意作出恰当的图形,即可求得结果. (1)选择A同学. S△DBE==, 当x2=50,即x=5,S△DBE取最大值25. 选择B同学. 方法一:S△DBE=xy=×2xy≤(x2+y2)=25 当x=y=5时,S△DBE取最大值25. 方法二:S△DBE=xy=[(x2+y2)-(x-y)2]= [100-(x-y)2], 当(x-y)2=0,即x=y=5时,S△DBE取最大值25; (2)如图所示,点D1即为所求的点 (3)如图所示: S梯形ABCD最大值为: 点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大. |
据专家权威分析,试题“【提出问题】如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=.-九年级数学
下一篇:如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |