填写适当的理由:如图,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小吗?解:过点C画FC∥AB∵AB∥ED()FC∥AB()∴FC∥ED()∴∠B+∠1=180°∠D+∠2=180°()∴∠B+∠1+∠D+∠2=°()即:∠B+∠BCD+∠D=360°.-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

填写适当的理由:如图,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小吗?
解:过点C画FC∥AB
∵AB∥ED(  )
FC∥AB(  )
∴FC∥ED(  )
∴∠B+∠1=180°
∠D+∠2=180°(  )
∴∠B+∠1+∠D+∠2=  °(    )
即:∠B+∠BCD+∠D=360°.

题型:解答题  难度:偏易

答案

详见试题解析.
试题分析:首先过点C画FC∥AB,根据平行于同一直线的两直线平行,可得FC∥ED,然后由两直线平行,同旁内角互补,求得∠B+∠1=180°,∠D+∠2=180°,继而证得结论.


试题解析:过点C画FC∥AB,
∵AB∥ED(已知)
FC∥AB(作图)
∴FC∥ED(平行于同一直线的两直线平行)
∴∠B+∠1=180°
∠D+∠2=180°(两直线平行,同旁内角互补)
∴∠B+∠1+∠D+∠2=360°(等式的性质)
即:∠B+∠BCD+∠D=360°.
故答案为:已知;平行于同一直线的两直线平行;两直线平行,同旁内角互补;360.

据专家权威分析,试题“填写适当的理由:如图,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小吗?..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐