如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点与三角板OCD的直角顶点重合,边OA与OC重合,固定三角板OCD不动,把三角板OAB绕着顶点O顺时针转动,直到边OB落-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-05 / 加入收藏 / 阅读 [打印]

题文

如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点与三角板OCD的直角顶点重合,边OA与OC重合,固定三角板OCD不动,把三角板OAB绕着顶点O顺时针转动,直到边OB落在桌面上为止。

(1)如下图,当三角板OAB转动了20°时,求∠BOD的度数;

(2)在转动过程中,若∠BOD=20°,在下面两图中分别画出∠AOB的位置,并求出转动了多少度?

(3)在转动过程中,∠AOC与∠BOD有怎样的等量关系,请你给出相等关系式,并说明理由;

题型:解答题  难度:中档

答案

(1)40°;(2)转动了40°或80°; (3)∠AOC+∠BOD=60°或∠AOC-∠BOD=60°.


试题分析:(1)可直接求出角的度数;(2)要考虑到在∠COD内部和∠COD外部两种情况;(3)要分几种情况加以讨论.
试题解析:(1)∠BOD=90°-∠AOC-∠AOB=90°-20°-30°=40°.(2)如图

∠AOC=90°-∠BOD-∠AOB           ∠AOC= 90°+∠BOD-∠AOB
=90°-20°-30°=40°                 = 90°+20°-30°=80°
所以转动了40°或转动了80°;
(3)①OB边在∠COD内部或与OD重合,如图:关系式为:∠AOC+∠BOD=60°,理由是

∠AOC+∠BOD=90°-∠AOB=90°-30°=60°;
②OA边在∠COD内部或与OD重合,OB边在∠COD外部,如图:关系式为∠AOC-∠BOD=60°,理由因为∠AOC=90°-∠AOD,∠BOD=30°-∠AOD,
所以∠AOC-∠BOD=(90°-∠AOD)-(30°-∠AOD)=90°-∠AOD-30°+∠AOD=60°;

③OA、OB都在∠COD外部,如图:此时关系式为∠AOC-∠BOD=60°理由为

因为∠AOC=90°+∠AOD,∠BOD=30°+∠AOD,
所以∠AOC-∠BOD=(90°+∠AOD)-(30°+∠AOD)=90°+∠AOD-30°-∠AOD=60°
综合上述:∠AOC与∠BOD的关系为:∠AOC+∠BOD=60°或∠AOC-∠BOD=60°.

据专家权威分析,试题“如图,将一副三角板,如图放置在桌面上,让三角板OAB的30°角顶点..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐