如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=___-数学

题文

如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=______.

题型:填空题  难度:中档

答案



∵∠ABC与∠ACD的平分线交于点A1
∴∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,
根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,
∴∠A1+∠A1BC=∠A1+
1
2
∠ABC=
1
2
(∠A+∠ABC),
整理得,∠A1=
1
2
∠A=
α
2

同理可得,∠A2=
1
2
∠A1=
1
2
×
α
2
=
α
22

…,
∠A2012=
α
22012

故答案为:
α
22012

据专家权威分析,试题“如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1B..”主要考查你对  三角形的内角和定理,三角形的中线,角平分线,高线,垂直平分线  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理三角形的中线,角平分线,高线,垂直平分线

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:三角形的中线,角平分线,高线,垂直平分线

  • 三角形的中线:
    在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
    每条三角形中线分得的两个三角形面积相等。
    角平分线:
    三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
    三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
    高线:
    从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    线段的垂直平分线:
    经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

    <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐