已知三角形的一个角为180°-n°,最大角与最小角的差为24°,求n的取值范围.-数学

题文

已知三角形的一个角为180°-n°,最大角与最小角的差为24°,求n的取值范围.
题型:解答题  难度:中档

答案

设另外两个角为x°,x°+24°
(1)若180°-n°不最大的角也不最小的角,则最小角为x°,最大角为x°+24,
∴180-n°+x°+x°+24°=180°,
∴n°=x°+x°+24,
∴x°≤180°-2x°-24°≤x°+24°,
解得44°≤x°≤52°
解得112°≤n°≤128°;
(2)180°-n°是最大角时,最小角为180°-n°-24°,另一角为2n°-156°,
∴156°-n°≤2n°-156°≤180°-n°
∴104°≤n°≤112;
(3)180°-n°是最小角时,最大角为180°-n°+24°,另一角为2°-204°,
∴180°-n≤2n°-204°≤204°-n°,
解得128°≤n°≤136°.
综上所述,n的取值范围104≤n≤136.

据专家权威分析,试题“已知三角形的一个角为180°-n°,最大角与最小角的差为24°,求n的取..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐