图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)(1)图2有______个三角形;图3中有_-数学

题文

图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)

(1)图2有______个三角形;图3中有______个三角形
(2)按上面方法继续下去,第20个图有______个三角形;第n个图中有______个三角形.(用n的代数式表示结论)
题型:填空题  难度:中档

答案

(1)图2有5个三角形;图3中有9个三角形;
(2)按上面方法继续下去,可以得到(4)比(3)增加了4个三角形,
依此类推,第20个图有1+(20-1)×4=77个三角形;第n个图中有4(n-1)+1=4n-3个三角形.

据专家权威分析,试题“图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐