任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72第一次[72]=8第二次[8]=2第三次[2]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需-数学

<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" /> 与3的比较
根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>
②、 同是负数:
根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、 一正一负:
正数大于一切负数。

二、隐含条件法:
根据二次根式定义,挖掘隐含条件。
 例:比较的大小。
因为成立
所以a-2≧0即a≧2
所以1-a≦-1
所以≧0,≦-1
所以>

三、同次根式下比较被开方数法:
例:比较4与5大小
因为



四、作差法:
若a-b>0,则a>b
例:比较3--2的大小
因为3---2
=3--+2
=5-2
<=2.5
所以:5-2>0
即3->-2

五、作商法:
a>0,b>0,若>1,则a>b
例:比较的大小
因为÷
=×
=<1
所以:<

六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较的大小
因为>1,1>
所以>

七、平方法:
a>0,b>0,若a2>b2,则a>b。
例:比较的大小
()2=5+2+11=16+2
()2=6+2+10=16+2
所以:<

八、倒数法:


九、有理化法:
可分母有理化,也可分子有理化。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐