证明A=||x-y|+x+y-2z|+|x-y|+x+y+2z=4max{x,y,z},其中max{x,y,z}表示x,y,z这三个数中的最大者.-数学

首页 > 考试 > 数学 > 初中数学 > 绝对值/2019-02-12 / 加入收藏 / 阅读 [打印]

题文

证明A=||x-y|+x+y-2z|+|x-y|+x+y+2z=4max{x,y,z},其中max{x,y,z}表示x,y,z这三个数中的最大者.
题型:解答题  难度:中档

答案

证明:(1)当x≥y,x≥z时,
A=|x-y+x+y-2z|+x-y+x+y+2z
=2x-2z+2x+2z=4x;
(2)当y≥z,y≥x时,
A=|y-x+x+y-2z|+y-x+x+y+2z
=2y-2z+2y+2z=4y;
(3)当z≥x,z≥y时,因为
|x-y|+x+y=max{x,y}≤2z,
所以A=2z-|x-y|-x-y+|x-y|+x+y+2z=4z.
从而A=4max{x,y,z}.

据专家权威分析,试题“证明A=||x-y|+x+y-2z|+|x-y|+x+y+2z=4max{x,y,z},其中max{x,..”主要考查你对  绝对值  等考点的理解。关于这些考点的“档案”如下:

绝对值

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐