已知:两个正整数的和与积相等,求这两个正整数.不妨设这两个正整数为a、b,且a≤b.由题意,得ab=a+b,(*)则ab=a+b≤b+b=2b,所以a≤2,因为a为正整数,所以a=1或2,①当a=1时,代-数学

题文

已知:两个正整数的和与积相等,求这两个正整数.
不妨设这两个正整数为a、b,且a≤b.
由题意,得ab=a+b,(*)
则ab=a+b≤b+b=2b,所以a≤2,
因为a为正整数,所以a=1或2,
①当a=1时,代入等式(*),得1?b=1+b,b不存在;
②当a=2时,代入等式(*),得2?b=2+b,b=2.
所以这两个正整数为2和2.
仔细阅读以上材料,根据阅读材料的启示,思考是否存在三个正整数,它们的和与积相等试说明你的理由.
题型:解答题  难度:中档

答案

假设存在三个正整数,它们的和与积相等,
不妨设这三个正整数为a、b、c,且a≤b≤c,则abc=a+b+c(※)
所以abc=a+b+c≤c+c+c=3c,所以ab≤3,
若a≥2,则b≥a≥2,所以ab≥4,与ab≤3矛盾.
因此a=1,b=1或2或3,
①当a=1,b=1时,代入等式(※)得1+1+c=1?1?c,c不存在.
②当a=1,b=2时,代入等式(※)得1+2+c=1?2?c,c=3.
③当a=1,b=3时,代入等式(※)得1+3+c=1?3?c,c=2,与b≤c矛盾,舍去.
所以a=1,b=2,c=3,因此假设成立,即存在三个正整数,它们的和与积相等.

据专家权威分析,试题“已知:两个正整数的和与积相等,求这两个正整数.不妨设这两个正整..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐