某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:AB成本(万元-数学

题文

某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
  A B
成本(万元/套) 25 28
售价(万元/套) 30 34
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
注:利润=售价-成本.
题型:解答题  难度:中档

答案

(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
由题意知2090≤25x+28(80-x)≤2096
解得48≤x≤50
∵x取非负整数,∴x为48,49,50.
∴有三种建房方案:
方案一:A种户型的住房建48套,B种户型的住房建32套,
方案二:A种户型的住房建49套,B种户型的住房建31套,
方案三:A种户型的住房建50套,B种户型的住房建30套;

(2)设该公司建房获得利润W(万元).
由题意知W=(30-25)x+(34-28)(80-x)=5x+6(80-x)=480-x,
∴当x=48时,W最大=432(万元)
即A型住房48套,B型住房32套获得利润最大;

(3)由题意知W=(5+a)x+6(80-x)
=480+(a-1)x
∴当0<a<1时,x=48,W最大,即A型住房建48套,B型住房建32套.
当a=1时,a-1=0,三种建房方案获得利润相等.
当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套.

据专家权威分析,试题“某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐