如图所示,一个四棱柱的底面是一个边长为10cm的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是()、();②如果高为h(cm)时,体积为V(cm3),-七年级数学

首页 > 考试 > 数学 > 初中数学 > 变量及函数/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图所示,一个四棱柱的底面是一个边长为10cm的正方形,它的高变化时,棱柱的体积也随着变化.①在这个变化中,自变量、因变量分别是(    )、(     );②如果高为h(cm)时,体积为V(cm3),则V与h的关系为(     );③当高为5cm时,棱柱的体积是(    );④棱柱的高由1cm变化到10cm时,它的体积由(     )变化到(     ).

题型:填空题  难度:中档

答案

①高,体积;②v=100h;③500;④100变化到1000.

据专家权威分析,试题“如图所示,一个四棱柱的底面是一个边长为10cm的正方形,它的高变..”主要考查你对  变量及函数,函数值  等考点的理解。关于这些考点的“档案”如下:

变量及函数函数值

考点名称:变量及函数

  • 函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
    如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
    变量:
    在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
    自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
    因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

  • 变量的关系:
    在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
    进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
    自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。

  • 函数自变量的取值范围的确定:
    使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
    自变量的取值范围的确定方法:
    首先要考虑自变量的取值必须使解析式有意义,
    ①当解析式为整式时,自变量的取值范围是全体实数;
    ②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
    ③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
    ④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。

考点名称:函数值

  • 定义:
    函数的值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值。如当x=a时,函数有唯一确定的对应值,这个值就是当x=a时的函数值。

  • 函数值的性质:
    ①当函数式是由一个解析式表示时,欲求函数值,实质就是求代数式的值;
    ②当一只函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程;
    ③当给定函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式;
    ④当自变量确定时,函数值时唯一确定的,但当函数值唯一确定时,对应的自变量可以是多个,如y=x2-1,当x=3时,x=±2。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐