一水池内有水90立方米,设全池水排尽的时间为y分钟,每分钟的排水量为x立方米,排水时间的范围是9≤y≤15(1)求y关于x的函数解析式,并指出每分钟排水量x的取值范围;(2)在坐标-数学

首页 > 考试 > 数学 > 初中数学 > 函数值/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

一水池内有水90立方米,设全池水排尽的时间为y分钟,每分钟的排水量为x立方米,
排水时间的范围是9≤y≤15
(1)求y关于x的函数解析式,并指出每分钟排水量x的取值范围;
(2)在坐标系中画出此函数的图象;
(3)根据图象求当每分钟排水量为9立方米时,排水需多少分钟?当排水时间为10分钟时,每分钟的排水量是多少立方米?

题型:解答题  难度:中档

答案

(1)∵每小时排水量×排水时间=蓄水池的容积,
∴y=
90
x

∵排水时间的范围是9≤y≤15
∴6≤x≤10;
(2)



(3)令x=9,解得y=10,
令y=10求得x=9,
∴当每分钟排水量为9立方米时,排水需10分钟;当排水时间为10分钟时,每分钟的排水量是9立方米.

据专家权威分析,试题“一水池内有水90立方米,设全池水排尽的时间为y分钟,每分钟的排水..”主要考查你对  函数值,函数的图像,求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

函数值函数的图像求反比例函数的解析式及反比例函数的应用

考点名称:函数值

  • 定义:
    函数的值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值。如当x=a时,函数有唯一确定的对应值,这个值就是当x=a时的函数值。

  • 函数值的性质:
    ①当函数式是由一个解析式表示时,欲求函数值,实质就是求代数式的值;
    ②当一只函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程;
    ③当给定函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式;
    ④当自变量确定时,函数值时唯一确定的,但当函数值唯一确定时,对应的自变量可以是多个,如y=x2-1,当x=3时,x=±2。

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。