问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过-九年级数学
题文
问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N。 问题解决:如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小。 解:由图可知:M=a2+b2,N=2ab, ∴M-N=a2+b2-2ab=(a-b)2, ∵a≠b, ∴(a-b)2>0, ∴M-N>0, ∴M>N。 |
类别应用: (1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低。 (2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c)。 |
联系拓广:小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由。 |
答案
解:类别应用:(1), ∵a,b是正整数且a≠b, ∴, ∴, ∴小丽购买商品的平均价格比小颖的高; (2)由图知,M1=2(a+b+b+c)=2a+4b+2c, N1=2(a-c+b+3c)=2a+2b+4c, M1-N1=(2a+4b+2c)-(2a+2b+4c)=2b-2c=2(b-c) ∵b>c, ∴M1-N1=2(b-c)>0,即M1>N1, 所以第一个矩形的周长大于第二个矩形的周长; 联系拓广:设图5的捆绑绳长为,则=2a×2b+2×2+4c×2=4a+4b+8c 设图6的捆绑绳长为,则=2a×2+2b×2+2c×2=4a+4b+4c 设图7的捆绑绳长为,则=3a×2+2b×2+3c×2=6a+4b+6c ∵-=(4a+4b+8c)-(4a+4b+4c)=4c>0, ∴>, ∵-=(6a+4b+6c)-(4a+4b+8c)=2a-2c>0, =2(a-c)>0,(∵已知a>c) ∴>, ∴>>, 所以第三种捆绑方法用绳最长,第二种最短。 |
据专家权威分析,试题“问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数..”主要考查你对 分式的加减乘除混合运算及分式的化简,整式的加减乘除混合运算 等考点的理解。关于这些考点的“档案”如下:
分式的加减乘除混合运算及分式的化简整式的加减乘除混合运算
考点名称:分式的加减乘除混合运算及分式的化简
- 分式的加减乘除混合运算:
分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。
分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。 分式的混合运算:
在解答分式的乘除法混合运算时,注意两点,就可以了:
注意运算的顺序:按照从左到右的顺序依次计算;
注意分式乘除法法则的灵活应用。
考点名称:整式的加减乘除混合运算
- 加法、减法、乘法和除法,统称为四则运算。
其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。 - 基本运算顺序:
只有一级运算时,从左到右计算;
有两级运算时,先乘除,后加减。
有括号时,先算括号里的;
有多层括号时,先算小括号里的。
要是有平方,先算平方。
在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:化简,求值:,其中。-九年级数学
下一篇:化简:=()。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |