先化简再求值(1-2xx+y)÷x2-2xy+y23x+3y+x2+xyx2-xy,其中x=2+1,y=22.-数学

题文

先化简再求值(1-
2x
x+y
x2-2xy+y2
3x+3y
+
x2+xy
x2-xy
,其中x=

2
+1,y=2

2
题型:解答题  难度:中档

答案

原式=
x+y-2x
x+y
÷
(x-y)2
3(x+y)
+
x(x+y)
x(x-y)
=
y-x
x+y
?
3(x+y)
(y-x)2
+
x+y
x-y
=-
3
x-y
+
x+y
x-y
=
x+y-3
x-y

当x=

2
+1,y=2

2
时,
原式=

2
+1+2

2
-3

2
+1-2

2
=
3

2
-2
1-

2

=-(3

2
-2)(1+

2

=-(3

2
+6-2-2

2

=-

2
-4.

据专家权威分析,试题“先化简再求值(1-2xx+y)÷x2-2xy+y23x+3y+x2+xyx2-xy,其中x=2+1,..”主要考查你对  分式的加减乘除混合运算及分式的化简,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简最简二次根式

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐