已知1a+1b+1c=1a+b+c,求证:n为奇数时,1an+1bn+1cn=1an+bn+cn.-数学

题文

已知
1
a
+
1
b
+
1
c
=
1
a+b+c
,求证:n为奇数时,
1
an
+
1
bn
+
1
cn
=
1
an+bn+cn
题型:解答题  难度:中档

答案

证明:∵
1
a
+
1
b
+
1
c
=
1
a+b+c

两边同时乘以abc (abc不等于0)得,
bc+ac+ab=
abc
a+b+c

两边同时乘以a+b+c得,
a2b+ab2+a2c+ac2+b2c+bc2+3abc=abc,
∴a2b+ab2+a2c+ac2+b2c+bc2+2abc=0,
∴a2b+ab2+a2c+ac2+b2c+bc2+2abc=(a+b)(b+c)(a+c)=0,
∴a+b,b+c,c+a中,至少有一个是0,
故当n为奇数时an+bn,bn+cn,an+cn至少有一个是0,
同理:
1
an
+
1
bn
+
1
cn
-
1
an+bn+cn

=
(an+bn)(bn+cn)(an+cn)
anbncn(an+bn+cn)

=0.
1
an
+
1
bn
+
1
cn
=
1
an+bn+cn

据专家权威分析,试题“已知1a+1b+1c=1a+b+c,求证:n为奇数时,1an+1bn+1cn=1an+bn+cn.-..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。