已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.(1)求从中随机取出一个黑球的概率.(2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概-数学

题文

已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白球、4个黑球.
(1)求从中随机取出一个黑球的概率.
(2)若往口袋中再放入x个黑球,且从口袋中随机取出一个白球的概率是
1
4
,求代数式
x-2
x2-x
÷(x+1-
3
x-1
)的值.
题型:解答题  难度:中档

答案

(1)P(取出一个黑球)=
4
3+4
=
4
7


(2)设往口袋中再放入x个黑球,从口袋中随机取出一个白球的概率是
1
4

即  P(取出一个白球)=
3
7+x
=
1
4

由此解得x=5.
经检验x=5是原方程的解.
∵原式=
x-2
x(x-1)
÷
x2-1-3
x-1

=
x-2
x(x-1)
×
x-1
(x-2)(x+2)

=
1
x(x+2)

∴当x=5时,原式=
1
35

据专家权威分析,试题“已知一个口袋中装有7个只有颜色不同、其它都相同的球,其中3个白..”主要考查你对  分式的加减乘除混合运算及分式的化简,概率的意义  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简概率的意义

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。