已知a、b、c是实数.若b2+c2-a22bc、c2+a2-b22ca、a2+b2-c22ab之和恰等于1,求证:这三个分数的值有两个为1,一个为-1.-数学

题文

已知a、b、c是实数.若
b2+c2-a2
2bc
c2+a2-b2
2ca
a2+b2-c2
2ab
之和恰等于1,求证:这三个分数的值有两个为1,一个为-1.
题型:解答题  难度:中档

答案

证明:由题设得:
b2+c2-a2
2bc
+
c2+a2-b2
2ca
+
a2+b2-c2
2ab
=1,
即(
b2+c2-a2
2bc
-1)+(
c2+a2-b2
2ca
-1)+(
a2+b2-c2
2ab
+1)=0,
b2+c2-a2-2bc
2bc
+
a 2+c2-b2-2ac
2ac
+
a2+b2-c2+2ab
2ab
=0,

(b-c) 2-a2
2bc
+
(a-c) 2-b2
2ac
+
(a+b) 2-c2
2ab
=0,
a(b-c+a)(b-c-a)+b(a-c+b)(a-c-b)
2abc
+
c(a+b+c)(a+b-c)
2abc
=0,
(a+b-c)(ab-ac-a2+ab-bc-b2+ac+bc+c2)
2abc
=0,

(a+b-c)[c2-(a-b) 2]
2abc
=0,
(a+b-c)(c+a-b)(c-a+b)
2abc
=0,
∴a+b-c=0或c-a+b=0或c+a-b=0,
(1)若a+b-c=0,则
b2+c2-a2
2bc
=
b2+c2-(b-c) 2
2bc
=1,
c2+a2-b2
2ca
=
c2+a2 -(c-a) 2
2ac
=1,
a2+b2-c2
2ab
=
a2+b2-(a+b) 2
2ab
=-1,
(2)若c+a-b=0,同理可得:
b2+c2-a2
2bc
=1,
c2+a2-b2
2ca
=-1,
a2+b2-c2
2ab
=1,
(3)若b+c-a=0,同理可得:
b2+c2-a2
2bc
=-1,
c2+a2-b2
2ca
=1,
a2+b2-c2
2ab
=1,
综上所述(1)、(2)、(3)可得,三个分数,
b2+c2-a2
2bc
c2+a2-b2
2ca
a2+b2-c2
2ab

的值有两个为1,一个为-1.

据专家权威分析,试题“已知a、b、c是实数.若b2+c2-a22bc、c2+a2-b22ca、a2+b2-c22ab之和..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。