如图,点A在反比例函数y=的图象上,AB⊥x轴于B,点C在x轴上,且CO=OB,S△ABC=2,确定此反比例函数的解析式。-九年级数学
题文
如图,点A在反比例函数y=的图象上,AB⊥x轴于B,点C在x轴上,且CO=OB,S△ABC=2,确定此反比例函数的解析式。 |
答案
解:设A(x,y),连接OA,则OB=x,BA=y ∵CO=OB,∴S△AOB=S△ACO ∴S△AOB=S△ABC=1 ∴S△AOB=OB·BA=xy=1 ∴k=xy=2 ∴反比例函数的解析式为y=。 |
据专家权威分析,试题“如图,点A在反比例函数y=的图象上,AB⊥x轴于B,点C在x轴上,且CO..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知:关于x的一元二次方程kx2+(2k-3)x+k-3=0有两个不相等实数根(k<0)。(1)用含k的式子表示方程的两实数根;(2)设方程的两实数根分别是x1,x2,(其中x1>x2),若一次函-九年级数学
下一篇:如图,反比例函数y=(x>0)的图象过点A。(1)求反比例函数的解析式;(2)若点B在y=(x>0)的图象上,求直线AB的解析式。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |