如图,A、B是反比例函数(k>0)上的两个点,AC⊥x轴于点C,BD⊥y轴于点D,连结AD、BC,则△ADB与△ACB的面积大小关系是[]A.S△ADB>S△ACBB.S△ADB<S△ACBC.S△ADB=S△ACBD.不能确定-九年级数学
题文
如图,A、B是反比例函数(k>0)上的两个点,AC⊥x轴于点C,BD⊥y轴于点D,连结AD、BC,则△ADB与△ACB的面积大小关系是 |
[ ] |
A. S△ADB>S△ACB B.S△ADB<S△ACB C.S△ADB=S△ACB D.不能确定 |
答案
C |
据专家权威分析,试题“如图,A、B是反比例函数(k>0)上的两个点,AC⊥x轴于点C,BD⊥y..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点。(1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围。-九年级数学
下一篇:如图,某反比例函数的图像过点A(1,-2),则该函数表达式为[]A.B.C.D.-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |