如图①,小华设计了一个探索杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O的右侧用一个弹簧秤向下拉木杆,改变弹簧秤与点O的距离x(单位:厘米)-数学

题文

如图①,小华设计了一个探索杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O的右侧用一个弹簧秤向下拉木杆,改变弹簧秤与点O的距离x(单位:厘米),观察弹簧秤的示数y(单位:牛)的变化情况,实验数据记录如下:
x(单位:厘米) 10 15 20 25 30
y(单位:牛) 30 20 15 12 10
(1)把上表中(x,y)的各组对应值作为点的坐标,在图②所示的坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y与x之间的函数关系,并求出函数关系式;
(2)当弹簧秤的示数为24牛时,弹簧秤与点O的距离是多少厘米?随着弹簧秤与O点的距离不断减小,弹簧秤的示数将发生怎样的变化?


题型:解答题  难度:中档

答案



(1)图象如右图:
由图象猜测y与x之间的函数关系为反比例函数
∴设y=
k
x
(k≠0)
把x=10,y=30代入得:k=300
∴y=
300
x

将其余各点代入验证均适合
∴y与x的函数关系式为:y=
300
x


(2)把y=24代入y=
300
x
得:x=12.5
∴当弹簧秤的示数为24N时,弹簧秤与O点的距离是12.5cm,
随着弹簧秤与O点的距离不断减小,弹簧秤上的示数不断增大.

据专家权威分析,试题“如图①,小华设计了一个探索杠杆平衡条件的实验:在一根匀质的木杆..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐