某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增电量y(亿度)与(x-0.4)成反比例,又当x=0.65元时-数学

题文

某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增电量y(亿度)与(x-0.4)成反比例,又当x=0.65元时,y=0.8.求:
(1)y与x之间的函数关系式;
(2)若电价调至0.6元时,本年度的用电量是多少?
题型:解答题  难度:中档

答案

(1)设y=
k
x-0.4
(k≠0),因为当x=0.65时y=0.8,
所以有0.8=
k
0.65-0.4

∴k=0.2,
∴y=
0.2
x-0.4
=
1
5x-2
(x>0且x≠0.4),
即y与x之间的函数关系式为y=
1
5x-2


(2)把x=0.6代入y=
1
5x-2
中,得y=
1
5×0.6-2
=1,
所以本年度的用电量为1+1=2(亿度).

据专家权威分析,试题“某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐