已知反比例函数的解析式为y=1-kx(k≠1).(1)在反比例函数图象的每一条曲线上,y随着x的增大而增大,求k的取值范围;(2)在(1)的条件下点A为双曲线y=1-kx(x<0)上一点,AB∥x轴交直-数学

题文

已知反比例函数的解析式为y=
1-k
x
(k≠1).
(1)在反比例函数图象的每一条曲线上,y随着x的增大而增大,求k的取值范围;
(2)在(1)的条件下点A为双曲线y=
1-k
x
(x<0)上一点,AB∥x轴交直线y=x于点B,若AB2-OA2=4,求反比例函数的解析式.
题型:解答题  难度:中档

答案

(1)∵在双曲线的每个分支内,y随着x的增大而增大,
∴1-k<0,
∴k>1;
(2)点B在直线y=x上,设B(t,t),1-k=m(m≠0),
故双曲线解析式为y=
m
x
(m≠0),
∵AB∥x轴,
∴A点的纵坐标为t,
把y=t代入y=
m
x
得x=
m
t

∴A点坐标为(
m
t
,t),
∴AB2=(t-
m
t
2,OA2=(
m
t
2+t2
∵AB2-OA2=4,
∴(t-
m
t
2-[(
m
t
2+t2]=4,解得:m=-2,
故1-k=-2,
∴反比例函数的解析式为y=
-2
x

据专家权威分析,试题“已知反比例函数的解析式为y=1-kx(k≠1).(1)在反比例函数图象的每一..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐