求一般数列通项公式的四种常用方法(基础篇)

首页 > 教育新闻 > 教育杂谈/2017-11-07 / 加入收藏 / 阅读 [打印]


对于等差数列与等比数列,我们可以通过求出基本量:首项与公差(或公比),然后代入对应的通项公式,求出其通项公式.

而对于一般数列求通项公式,常用的方法有:an与Sn关系式法、累加法、累乘法与构造法.

一、an与Sn关系式法

an=Sn-Sn-1适用的条件是n≥2,利用此公式求得an后,一定要验证n=1时是否满足所求出的an,若不满足,则应用分段形式来表示.

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

二、累加法

累加法是根据递推公式,依次将n换为1,2,…,n-1,然后将n-1个式子相加.

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

其等价形式是an=(an-an-1) (an-1-an-2) …(a3-a2) (a2-a1) a1=f(n-1) f(n-2) … f(2) f(1) a1.

三、累乘法

累乘法是根据递推公式,依次将n换为1,2,…,n-1,然后将n-1个式子相乘.

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

四、构造法

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)

求一般数列通项公式的四种常用方法(基础篇)