冲刺2019年高考数学, 典型例题分析8:数列求和相关综合题型

首页 > 教育新闻 > 教育杂谈/2018-06-25 / 加入收藏 / 阅读 [打印]

考点分析:

数列递推式;数列的求和.

题干分析:

(1)利用已知条件推出a n +1=2a n,数列{a n}为等比数列,公比q=2,求出通项公式.

(2)推出b n=2 n(5-n),方法一:通过T 1<T 2<T 3<T 4=T 5>T 6>推出结果.方法二利用错位相减法求和,当1≤n<4,T n +1>T n,当n=4,T 4=T 5,当n>4时,T n +1<T n,

综上,当且仅当k=4或5时,均有T k≥T n.

(3)利用裂项求和,通过对任意n∈N*均有R n<2/3成立,求解即可.

解题反思:

数列求和是数列中的一个重要内容,是数列知识的综合体现,也是高考的热点。

数列是以正整数集或它的有限子集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项排在第n位的数称为这个数列的第n项,通常用an表示。

数列求和是指对按照一定规律排列的数进行求和,即求Sn。

实质上是求{Sn}的通项公式,应注意对其含义的理解。

常见的求和方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归等。