给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形,如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形,请你-九年级数学
题文
给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形,如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形,请你解决下列问题: |
(1)边长为a的正方形存在“加倍”正方形吗?如果存在,求出“加倍”正方形的边长;如果不存在,说明理由。 (2)当矩形的长和宽分别为m,n时,它是否存在“加倍”矩形?请作出判断,说明理由。 |
答案
解:(1)不存在 因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在。 (2)存在 设“加倍”矩形的长和宽分别为x,y 则 x,y就是关于A的方程的两个正根 ∵ 当m,n不同时为零时,此题中,m>0,n>0 ∴ ∴方程有两个不相等的正实数根x和y 即:存在一个矩形是已知矩形的“加倍”矩形。 |
据专家权威分析,试题“给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩..”主要考查你对 一元二次方程根与系数的关系,相似多边形的性质 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系相似多边形的性质
考点名称:一元二次方程根与系数的关系
- 一元二次方程根与系数的关系:
如果方程 的两个实数根是那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
考点名称:相似多边形的性质
相似多边形:
如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)
判定:
如果对应角相等,对应边成比例的多边形是相似多边形.
如果所有对应边成比例,那么这两个多边形相似- 相似多边形的性质:
相似多边形的性质定理1:相似多边形周长比等于相似比。
相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形的性质定理5:若相似比为1,则全等。
相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |